Factors associated with the Incidence of Tuberculosis and Predicting the Number of Cases in the Area of Mueang Pattani District
Keywords:
Predicting, Factors, Tuberculosis, IncidenceAbstract
Ending the epidemic of tuberculosis (TB) is one of the United Nations' Sustainable Development Goals. To achieve the goal, data is therefore an important tool for public health officials to plan and improve strategies for disease control. Therefore, the purpose of this study was to investigate the factors associated with the incidence of tuberculosis in the area of Mueang Pattani District, along with predicting the number of patients. Data on confirmed tuberculosis cases from 2019 to 2023 was obtained from the National Tuberculosis Information Program (NTIP) database. Multiple poisson regression and linear regression statistical models were used to investigate the factors and predict the numbers of patients, respectively. The results of the study showed that males were 1.4 times more likely to develop tuberculosis than females. Age groups aged 44 years and over had a higher risk than children under 15 years of age. Sub-districts with urban societies such as Sabarang, Anoru, Chabang Tiko, Bana, Ru Samilae, Puyut, and surrounding suburban sub-districts such as Talubo, Tanyong Lulo, Baraho, and Paka Harang had a lower risk compared to Barahom. For predicting the number of patients, it was found to decrease by 28 people per year on average. The results of the study can be applied to TB control planning, and the analysis method can be applied to studies of other communicable diseases or other areas as well.
Downloads
References
กรมควบคุมโรค กระทรวงสาธารณสุข. แนวทางการควบคุมวัณโรคประเทศไทย พ.ศ. 2564. พิมพ์ครั้งที่่ 2. กรุงเทพฯ, สำนักพิมพ์อักษรกราฟฟิคแอนด์ดีไซน์. 2565.
World Health Organization. Tuberculosis. Accessed 9 May 2023 from https://www.who.int/news-room/fact-sheets/detail/tuberculosis.
กรมควบคุมโรค กระทรวงสาธารณสุข. รายงานสถานการณ์และการเฝ้าระวังวัณโรคประเทศไทย. สืบค้นเมื่อ 9 พฤษภาคม 2566 จาก https://www.tbthailand.org/download/form/รายงานสถานการณ์วัณโรคเดือนมีนาคม.pdf.
Ministry of Public Health. NTIP (national tuberculosis information program). Accessed 24 May 2023 from https://ntip-ddc.moph.go.th/uiform/Login.aspx.
Kongchouy N, Kakchapati S, and Choonpradub C. Modeling the incidence of tuberculosis in southern Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health. 2010; 41(3): 574-82.
Liao CM, Hsieh NH, Huang TL, Cheng YH, Lin YJ, Chio CP, and et al. Assessing trends and predictors of tuberculosis in Taiwan. BMC Public Health. 2012; 12(1): 1-12. DOI: 10.1186/1471-2458-12-29.
Kakchapati S, Choonpradub C, and Lim A. Spatial and temporal variations in tuberculosis incidence, Nepal. The Southeast Asian Journal of Tropical Medicine and Public Health. 2014; 45(1): 95-102.
Ministry of Public Health. HDC (Health Data Center). Accessed 24 May 2023 from https://ptn.hdc.moph.go.th/hdc/reports/report.php?&cat_id=ac4eed1bddb 23d6130746d62d2538fd0&id=710884bc8d16f755073cf194970b064a.
Hilbe JM. International Encyclopedia of Statistical Science: Modeling Count Data. Heidelberg, Berlin: Springer; 2011. p. 836-39.
Horton KC, MacPherson P, Houben RMGJ, White RG, and Corbett EL. Sex differences in tuberculosis burden and notifications in low- and middle-income countries: A systematic review and meta-analysis. PLoS Medicine. 2016; 13(9): e1002119. DOI: 10.1371/journal.pmed.1002119.
Horton KC, Hoey AL, Béraud G, Corbett EL, and White RG. Systematic review and meta-analysis of sex differences in social contact patterns and implications for tuberculosis transmission and control. Emerging Infectious Diseases. 2020; 26(5): 910-9. DOI: 10.3201/eid2605.190574.
ซอฟูวัณ จารง. ศึกษาพฤติกรรมการสูบบุหรี่ของชาวไทยมุสลิมในอำเภอยะรัง จังหวัดปัตตานี. มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี. 2559.
Narasimhan P, Wood J, MacIntyre CR, and Mathai D. Risk factors for tuberculosis. Pulmonary Medicine. 2013; 63(1): 37-46. DOI: 10.1155/2013/828939.
Siddalingaiah N, Chawla K, Nagaraja SB, and Hazra D. Risk factors for the development of tuberculosis among the pediatric population: A systematic review and meta-analysis. European Journal of Pediatrics. 2023; 182(7): 3007-19. DOI: 10.1007/s00431-023-04988-0.
Di Gennaro F, Vittozzi P, Gualano G, Musso M, Mosti S, Mencarini P, and et al. Active pulmonary tuberculosis in elderly patients: A 2016-2019 retrospective analysis from an Italian referral hospital. Antibiotics. 2020; 9(8): 489. DOI: 10.3390/antibiotics9080489.
Cheng MP, Abou Chakra CN, Yansouni CP, Cnossen S, Shrier I, Menzies D, and et al. Risk of active tuberculosis in patients with cancer: A systematic review and meta-analysis. Clinical Infectious Diseases. 2017; 64(5): 635-44. DOI: 10.1093/cid/ciw838.
Xhardo HE, Hysenbelli B, Ylli D, and Smaja G. Prevalence and impact of diabetes mellitus in adult tuberculosis patients; A cross-sectional study. Endocrine Abstracts. 2023; 90: 341. DOI: 10.1530/endoabs.90.p341.
Romanowski K, Clark EG, Levin A, Cook VJ, and Johnston JC. Tuberculosis and chronic kidney disease: an emerging global syndemic. Kidney International. 2016; 90(1): 34-40. DOI: 10.1016/j.kint.2016.01.034.
ฐปรัตน์ รักษ์ภาณุสิทธิ์, นันทิยา โข้ยนึ่ง, แสงอรุณ อิสระมาลัย, และอริยา คูหา. ผลของความรอบรู้ด้านสุขภาพและการรับรู้ภาวะสุขภาพของตนเองต่อคุณภาพชีวิตของผู้สูงอายุในสามจังหวัดชายแดนใต้ประเทศไทย. วารสารเครือข่ายวิทยาลัยพยาบาลและสาธารณสุขภาคใต้. 2563; 7(3): 182-194.
Yang SH, Jung EY, and Yoo YS. Health literacy, knowledge and self-care behaviors in patients with pulmonary tuberculosis living in community. Journal of Korean Academy of Fundamentals of Nursing. 2020; 27(1): 1-11. DOI: 10.7739/jkafn.2020.27.1.1.
Li Z, Mao X, Liu, Q, Song H, Ji Y, Xu D, Wang J, and et al. Long-term effect of exposure to ambient air pollution on the risk of active tuberculosis. International Journal of Infectious Diseases. 2019; 87: 177-84. DOI: 10.1016/j.ijid.2019.07.027.
Gelaw YA, Yu W, Magalhães, RJS, Assefa Y, and Williams G. Effect of temperature and altitude difference on tuberculosis notification: a systematic review. Journal of Global Infectious Diseases. 2019; 11(2): 63-8. DOI: 10.4103/jgid.jgid_95_18.
Sukkhum S, Lim A, Ingviya T, and Saelim R. Seasonal patterns and trends of air pollution in the upper northern Thailand from 2004 to 2018. Aerosol and Air Quality Research. 2022; 22(5): 210318. DOI: 10.4209/aaqr.210318.
Ma Z, and Fan H. Influential factors of tuberculosis in mainland China based on MGWR model. Plos one. 2023; 18(8): e0290978. DOI: 10.1371/journal.pone.0290978.
Praveena SM, and Aris AZ. The impacts of COVID-19 on the environmental sustainability: a perspective from the Southeast Asian region. Environmental Science and Pollution Research. 2021; 28(45): 1-8. DOI: 10.1007/s11356-020-11774-0.
Migliori GB, Thong PM, Akkerman O, Alffenaar J-W, Álvarez-Navascués F, Assao-Neino MM, and et al. Worldwide effects of Coronavirus disease pandemic on tuberculosis services, January-April 2020. Emerging Infectious Diseases. 2020; 26(11): 2709-12. DOI: 10.3201/eid2611.203163.
Bazant MZ, and Bush JWM. A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences of the United States of America. 2021; 118(17): e2018995118. DOI: 10.1073/pnas.2018995118.
Alene KA, Wangdi K, and Clements ACA. Impact of the COVID-19 pandemic on tuberculosis control: An overview. Tropical Medicine and Infectious Disease. 2020; 5(3): 123. DOI: 10.3390/tropicalmed5030123.
Jain VK, Iyengar KP, Samy DA, and Vaishya R. Tuberculosis in the era of COVID-19 in India. Diabetes & Metabolic Syndrome. 2020; 14(5): 1439-43. DOI: 10.1016/j.dsx.2020.07.034.
Downloads
Published
How to Cite
License
Copyright (c) 2023 วารสารการศึกษาและวิจัยการสาธารณสุข (Journal of Education and Research in Public Health)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.