MUTLDIMENSIONAL SCALING
Main Article Content
Abstract
This article aims to provide an understanding of multidimensional scaling (MDS), a statistical technique used to analyze high-dimensional data sets by reducing them to lower dimensions. MDS creates a perceptual map to illustrate positions on the axes. A major advantage of MDS is that it does not require predefined evaluation criteria and can analyze data at both group and individual levels. MDS analysis employs the Dispersion Accounted For (DAF) and Tucker's Coefficient of Congruence as indices to measure goodness-of-fit, and the Stress index to assess the quality of the lower-dimensional data obtained. However, MDS has limitations, such as the difficulty in interpreting results, the dependence of outcomes on the distance measurement method used, and potential unsuitability for very high-dimensional data sets. Care must be taken when using MDS, and its limitations should be considered. Although MDS is not yet widely used in education, it is a valuable tool for data analysis. It can be easily implemented using well-known software such as SPSS.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
วัชรศักดิ์ สุดหล้า, ลภัสพิชชา สุรวาทกุล, อภิสิทธิ์ ตามสัตย์, ทีปทัศน์ ชินตาปัญญากุล, และสังวรณ์ งัดกระโทก. (2562). นักศึกษาให้ความสำคัญกับทักษะที่จำเป็นในยุคดิจิทัลอย่างไร? การศึกษานำร่องโดยใช้การวิเคราะห์เอ็มดีเอสและเอ็มดียู. วารสารศึกษาศาสตร์ มสธ., 13(1), 114-130. https://ir.stou.ac.th/bitstream/123456789/618/1/43332.pdf
Ahn, W., & Medin, D. (1992). A two-stage model of category construction. Cognitive Science, 16(1), 81-121.
Bowen, W. M., & Owusu-Agyemang, S. (2020). Scaling, Multidimensional. International Encyclopedia of Human Geography, 12(1), 97-102. https://doi.org/10.1016/B978-0-08-102295-5.10578-5.
Davison, M. (1983). Multidimensional scaling. John Wiley & Sons.
Davidson, M. L. (1983). Multidimensional scaling and its application in education. Journal of Educational Measurement, 20(1), 1–14. https://doi.org/10.1111/j.1745-3984.1983.tb00200.x
Dochy, F., & McDowell, L. (1997). Assessment as a tool for learning. Studies in Educational Evaluation, 23(4), 279–298. https://doi.org/10.1016/S0191-491X(97)86211-6
Groenen, P. J., & van de Velden, M. (2016). Multidimensional scaling by majorization. Journal of Statistical Software, 73(8). https://doi.org/10.18637/jss.v073.i08.
Hout, Michael C, et al. “Using Multidimensional Scaling to Quantify Similarity in Visual Search and Beyond.” Attention, Perception & Psychophysics, 78(1), 3–20, https://doi.org/10.3758/s13414-015-1010-6.
Jaworska, N., & Chupetlovska-Anastasova, A. (2009). A review of multidimensional scaling (MDS) and its utility in various psychological domains. Tutorials in Quantitative Methods for Psychology, 5(1), 1-10. https://doi.org/10.20982/tqmp.05.1.p001.
Martins, A. a. a. F., Cardoso, M. G. M. S., & Pinto, I. M. S. (2009). Multidimensional Unfolding and the use of alternative input scales. Journal of Targeting, Measurement and Analysis for Marketing, 17(3), 195–204. https://doi.org/10.1057/jt.2009.10.
McQuitty, S. (2017). The purposes of multivariate data analysis methods: An applied commentary. Journal of African Business, 19(1), 124–142. https://doi.org/10.1080/15228916.2017.1374816.
Mok, M. M. C. (2001). From traditional to new assessment practices: A review of the assessment reform in Hong Kong. Assessment in Education: Principles, Policy & Practice, 8(2), 225–236. https://doi.org/10.1080/09695940123778
Koowattanatianchai, N. (2016). Research Methods in Finance [Unpublished manuscript]. Department of business administration, Kasetsart university. https://fin.bus.ku.ac.th/01131591%20Financial%20Researc
h/Lecture%20Slides/Multivariate%20Statistical%20Analysis.pdf#page=2.00.
Saeed, N., Nam, H., Haq, M. I. U., & Muhammad Saqib, D. B. (2018). A survey on multidimensional scaling. ACM Computing Surveys (CSUR), 51(3), 1-25. https://doi.org/10.1145/3178155.
Schiffman, S., Reynolds, M. & Young, F. (1981). Introduction to multidimensional scaling: theory, method, and applications. Academic Press.
Skin, H.J., & Nosofsky, R.M. (1992). Similarity scaling studies of dot pattern classification and recognition. Journal of Experimental Psychology, 121(1), 278-304.
Stevens, S.S. (1971). Issues in psychophysical measurement. Psychological Review, 78(1), 426-450.
Socha, A., & Sigler, E. A. (2012). Using multidimensional scaling to improve functionality of the Revised Learning Process Questionnaire. Assessment and Evaluation in Higher Education/Assessment & Evaluation in Higher Education, 37(4), 409–425. https://doi.org/10.1080/02602938.2010.536835.