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Abstract

Qualitative text data—such as student feedback, interview transcripts, and online content—are
increasingly available from web-based sources and institutional repositories. However, their
unstructured nature makes large-scale analysis difficult. Text clustering helps organize such data by
grouping documents with similar content. This tutorial presents a step-by-step workflow for clustering
Thai-language texts using TF-IDF and the K-means algorithm in Python. It covers preprocessing,
vectorization, clustering, and evaluation, with code examples based on Thai-language documents.
The tutorial concludes with examples of educational applications, including analyzing open-ended
survey responses, exploring curriculum topics, and identifying emerging themes in academic writing.
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mamﬂ%mmammLﬂumaumﬂmeuqmwmuamammm (Mehta et al., 2024)
mmn‘l}mmamma iy Nt (X) dUaAILNTY (Instagram) uazinijn (Facebook) Fefnas
aﬂusﬂuuwammau (short text) Laz Lﬂumauawimimqamq (unstructured data)
(Ahmed et al., 2022) Uz menummmmiwﬂuﬂuﬁwuummﬂmnwwﬂuﬁ‘imﬂm
Lmawamauwamﬂaiuaauiau U FTUUNTTTANISIT UG (LMS) mvm"lwmmmam
el saisuar luflassadeiuiunmena mauamﬂmumawmﬂmu%lasu
mamﬁauwmmmmm (Ferreira-Mello et al., 2019) Fan153LA312 mauammmwaﬂum
mamamaﬂmmmwmﬂ (meaningful insights) Fofludeiiviane

N9y mumiﬂﬂmammamwmwmau‘h uas ummmmnmammwlmu‘lﬁmqamq
WsanTsvinwillastananu (text mining) (Lugue et al., 2019) d@unsnvinlenanuaieianis
WU N9 mﬂa UURAIY (text clustering) N9 AUTY NNUaAIU (text classification)
n19agUdaAIY (text summarization) Tnenidudsnsfidnisld s uauunnae N193ANG
1aAILl Luaqmﬂmmsaﬂum‘imqamw"ﬁauaa‘lumauamammwmmm‘lwmuaulm
TA998519 (Petukhova et al., 2025)

na¥angudannudunszurunsfumnguuasdannuiiinanuadiendety
nelugadoya lnadnauad1aAdaTusenIniana1sa 28N TunIINAd18ARY
(similarity function) (Allahyari et al., 2017; Aggarwal & Zhai, 2012) Taadap11u%3 8
Laﬂmfiﬁﬁmmmé’ﬁﬂﬂﬁaﬁ’u%gﬂ%’maaﬁ'ﬁlumjmﬁmﬁ’u (Bhattacharjee & Mitra, 2021)
n1s¥ang uiudanasnunisisaug uuulyde] @au (unsupervised learning) %qlm'q
anudnlatazdinszilassassuasdnyalag lilfudsnauauas (response variable)
w3 atlnan1iu (label) (Timbers et al., 2024) WAzd A NHULLTIF1997 (exploratory)
wasumiasaarevisaguuuiludiaya (Jain, 2010) usilutlagifunedangulalldaiauies
ngiFauguuliiyaau

nauNITIANgudanINaY maqLLﬂawammmaLaﬂmfi"hﬁaﬂ"luﬁﬂuuwmm au
Iuaﬁuﬂﬁmimmamamu (raw text) TaTRamse Faflunsyurunisiiandn nsunudianiny
(text representation) Tmﬂmﬂmumammw uﬂllﬂay vector space model (Mehta et al.,
2024) sl,uﬁ'«v'«gﬁ’uﬁ%%'ma‘ﬁu q Adanuiutauniniu wu nisldnnmasunuan (word
embeddings) ﬁ@ﬂu%"mnﬁﬁauammmwm wazn1stluiaa Transformer UN@319INIERS
LINUTUN (Contextuallzed embeddings) Vﬁ_l'i‘LILﬂaﬂumuﬂ?“’Iﬂﬂ’ﬁﬂﬂj’lﬂﬁlﬁﬂﬂ‘iﬁ)UﬂmmMmﬂ
vasiaAUudug Y was maawama‘amnamuﬂa‘“a*nﬁmwmnmu

unafiedau (tutorial) ummuwmﬂLwaaﬁmﬂmmswuammmﬂumfﬁmﬂau
Tanruag1aiuasu Tmmumamqmummu A UUDINITIANA UL BAINY
é’ﬂwm“LaWﬂwuaqsﬁauaﬂszmm’mmm%Lﬂuﬂ’mmaﬁam’mLﬂunmmas‘ fanasny
n1sa coma L] a‘w ugu L% 1 k-means, hierarchical clustering waw DBSCAN tneu
Uszidunag 'i'mmLLammamqmmLmﬁ"mmnamammmmiwamummﬂmﬂmam
Tuaudenigfmnunadnalagld Python Luaqmnuiamwmmmmﬂi:mawammlwa
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Taauazlasuninutey uanmnummﬂmamqm‘mﬂnmmmi &NG b LUUTUN
NNITANEN LwasluNmau"lﬂmmfinﬂfiwanm”lﬂjmﬂuﬂunuﬂmmwamqmmnmmﬂﬁﬂm

ﬂiuaﬂﬂmaQUﬂﬂQﬁu
1. LWELLuwu’]LLU’JﬂmWUQ’]u UANNIT WAL mumaumi'«vmnamammmml‘m Thal
text Clusterlng) DEINE
2. LwamLauamamwumaummmm MLLa LLﬂﬂNaﬂW‘E’Qﬁﬂﬁll‘l]ﬂﬂ')’]llﬂ'ﬁ‘lﬂ’]lﬂﬂ
Taeldf K-Means waz TF-IDF a8l Python

WUIAANITIANGULAAIY

mfi'?v’mﬂa;u (clustering) ﬁaﬂfi:mumiﬁumndmaﬁmq (objects) (Aggarwal &
Zhai, 2012) n5alAT9a519Nq U (Sinaga & Yang, 2020) fiiAuAdnanastunialy
Yadaya lnednanuadieadaiusznInuanasaawanduauAdna (similarity
function) (Aggarwal & Zhai, 2012; Allahyari et al., 2017) Eluﬁ‘uwmm:ﬁauuaﬁjjamm (text
domain) N1sdanguatutsau lUliudayalunaiaszau 1wy tanas (documents)
gianti (paragraphs) ﬂﬁwiﬂﬂ sentences) uazAN (terms) (Aggarwal & Zhai, 2012)

mfiﬁ)mﬂamLﬂuaaﬂafimuw“lﬂmuwmauaaamﬂunauﬂamnmm’mauwuﬁﬂu
(Timbers et al., 2024) Tmﬂamﬂmmﬂ‘lunauummmmﬂﬂaqnumama AUNANTTWIN
nqud AINUANITULNNT §/ (Sinaga & Yang, 2020) Feifutanansh aa‘luna AU
AANUAAIEARITUGIER mumnmem;ﬂuﬂuawnqmuummLLmnmmu (Bhattacharjee
& Mitra, 2021)

mﬁ’mnaﬁ'uimﬂﬂ"ﬂﬂ%lﬂ un 913 eug wuulyde]@au (unsupervised Learning)
sﬁqiﬂé’aﬂﬁayjaﬁﬁﬂmﬁﬁu (labels) @rmtihludadanuidingngusing « (Aggarwal &
Zhai, 2012; Jain, 2010; Timbers et al., 2024) WA N BN UNITA LuUndgzian
(cIaSS|f|cat|on) ﬁQLﬂunﬁ’iL?ﬂu’iLLuuumﬂau (supervised Learning) m‘lwmmamammmﬂ
Anfuiiafinluimaliaunsnss uwmmmmawammimlmmmmaﬂwm wmwumia
@21 (Aggarwal & Zhai, 2012) LLm"Luﬁwuumm'ﬁmnamm N5 9AUsTLAMEINISD
Lﬂuimmﬂ'i"anmmaueLmumﬂaumaim fanu emmmewauﬂmmqmaau (semi-
supervised learning)

mﬁ’mﬂéuﬁﬁfﬁmﬂ?“mélﬁa 1) Aunnlassasanialudioya (underlying structure)

o

Tmm}aaamwaamm A9ITUANUNAUNR LLa"'awmmanHm"mmmmawaua 2) LL“LNﬂ’alI

o
a

ANNETTUANG (natural classification) Iﬂﬂﬂ'ﬁ?’%ﬂﬂﬁ‘ LﬂVIﬁﬂﬂJ‘U’Jﬁ]L‘IN@Uﬂ%‘ﬂJ')ﬁ’]u e
3) ﬂawiaaqﬂmaga (compression) Tneldisaunungy (prototypes) Lmuﬂ;maaﬂammm%ﬂm
(Jain, 2010)
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NSUNULIaA21Y (text representation)

N19UTLUIANANIHIA LT ENNED A posulasdonulideglugluadaias
TaausazAnaziianimasunue LLawLuaifmsuammmwmmmanumlmLﬂummﬂw‘hj
wnuyAdaya Fainadannsiudanaud dannua1uanatesiuldduunnned wazyinlv
mmmmmwmmqwmmmmmLﬂumim"lumﬂmmﬁml,mai ANUIUTTEZUNN LAz
arupdadaiulddeiy Tnanisunudaniny (text representation) LT ungzUIUNTS
wlasdayadamnuau (input text) laglugduuuimedome wu wnnasvsawmsnd (Patil
et al., 2024) mnaummmﬂamammmmaqmnmmusuamm”Lwaa"LusﬂLmuwmm dul

nsunudaA1uLs uannes mumﬂmﬂmamam 836U (preprocessing) LU
mfiaummlummm (stopwords) Lay maﬂan"lumaﬂua‘ﬂLmuwumu‘immﬁma stemming
198 lemmatization (Mehta et al., 2024; Patil et al., 2024) ANMFUNI9UTZUIANAGTTUANG
nneazdlausid PyThaiNLP Fawuundaaniu Python uazillalildauléng (open-
source) lnanelulausiaztsznaudaemansuag lnad liFunstinlidrmin wazye
dayasing 9 ﬁﬁaq%’umué’mmmlwwmﬂwmﬂgﬂu:uu Wiy n19amA1aaniduniiedas
(tokenization) PyThaiNLP iaq%’uﬁana?ﬁmmfiﬁmr&i’mmagﬂLmu Tnadanasnuisuduia
newmm ?l\‘]slffﬁ? dictionary-based maximum matching 184 Sornlertlamvanich (1993)
F2UNU Thai character cluster U84 Theeramunkong et al. (2000) (Phatthiyaphaibun
et al., 2023) uananil Fail3ansEaFInuN Ingdu q 1y AttaCut Faflunissastaeld
IMLmaﬂ’]'iL‘iEIu'iLﬂNan (Chormal et al.,, 2019)

mamamammwmummﬁ WIANALA9TUINES AT IAIANI (vocabulary)
2 alsznauaaAilaidadt wmﬂﬂummaﬂmﬁ ntuazulasianinufunimas
‘Emﬂmmfﬂmlmmﬂmﬂuﬂm 191 one-hot encoding (OHE) wa¥ bag-of-words Taglu
unanuilazasunameaiafinanldie bag-of-words (Bow)

bag-of-words (Bow) Aawnatialunisunudannulvaglugduuummsnd Inausay
worvasunsniunulssleavsatanaislugadoya wazusarAaaulLNUAILAATAN
Tundarind asddsznavluwydndazuansinanutvasmstsngrasinluusazlszlan
#3aLanang (non-binary Bow) vgaaaldmininim (0 wsa 1) Lﬁafi:qmsﬁa;ﬂu’ﬁawﬂmﬂg
Ua4AN (binary BoW) uaidasndada1AnyAn BoW lua1u1909uus unmsamnuaunus
NE1PUURIAT LA %ﬁnﬁﬂlﬂ%’fﬁm’mﬁ'Lﬁummé’ﬂwm‘"ﬁmﬁ’nﬁm (Patil et al., 2024)

lunisinuunvisadnnguiandans maﬂm‘umaummmmﬂmmnuﬁvmwLanmfi
:mmﬂﬂﬂmmumnamﬂumLmaamuwmmmmmmamma A Faden A AnuBua A
lutanans (term frequency: TF) LLmuaW’m TF "qu’mummﬂunumnm '«Nlua’]mm
a‘"waummmmmmmamim wiu A« Tunsa stopwords wﬂmnguammlmmauw
Firdanadn §atiu FesniugadlialRazuuLAn (term scoring) fanunsauUFutimeineny
mgmmmmawamma:mmaLanmfiyl,wa"lm'mLmaia:waummmmmﬂ,mmmwmmmaqnu
dlamndathamune aunasusiugngaiy (Mehta et al., 2024)
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term frequency-inverse document frequency (TF-IDF) 1 u38n131% Ymdnen
Tulanasdsadangminn i aiueuulugnlunsfudutaya Taalsznaugiadas
a9AUsznaunanAa term frequency (TF) HeTpAudaasAmile gLsLuLaﬂma LAz inverse
document frequency (IDF) Teavunviinauaumainuasa1iuluaduananaiamie
(Salton & Buckley 1998)

‘MaqmmnLLﬂawanmﬂummmas LHaz Laﬂfﬁ‘mﬂLLV]H@')EIL']ﬂLG]@‘IV]ZJJJG]L‘Vl’]ﬂ‘LI
FALUATT AL AW amﬂﬁlmmumamﬂ?ﬂuLammafi (vector space model) lu
sllumsnduuIn M x N;I:ﬂEI‘VI M Basuusluaendn uas N ARILIUANaNsUYA

‘flja:g‘ja TA8LUNT NT U 9215 81N 1 term-document matrix %3 a document-term matrix
(Patil et al., 2024)

é’ana?ﬁuﬁ‘h’ﬂumeé’mna'wi'iamm
Mamnmﬂmawamm"maa‘lusﬂmawauaLﬂNmLasu nsdanguanunsaldmaila
ﬂ’]i’%mﬂallLL‘LI‘LI@QLﬂllll’]ﬂ?"ﬁlﬂmﬁlﬂm’]ﬂimtm‘ﬂﬁ%"]ﬂﬂjaﬂ vector space model (Mehta et al.,
2024) fanasnunisinnguiannuutiseaniduvaialssinmmdn i
1. MsInnguuuunisdlu (partitioning algorithms) Julgianguaataya N 96

a9 U
fa o

6L‘VTL‘IJ‘L‘L K ﬂﬁll IﬂEILLG]ﬁ wmamm aﬂ'luﬂammmmmu LLﬁ“iﬁNﬁﬁWﬁﬂ@W?’iﬂﬂjuLﬂﬂ’J
(single partition) mawmmammwm (Jain & Dubes, 1988) Imﬂaanaﬁwmlmummuﬂm
LU k- means Waz k-medoids %3 8 partltlonlng around medoids (PAM) "ij IN97 mnau
Use Lﬂ‘V]‘LlL‘VTlI’] amumauawmmm"’lwm Luaqmn "'Lﬂjnm"’lumﬁ*mmmﬂamnam e
ﬂ‘i:ﬁﬂﬁmwmnmauam‘[mqamqﬂam (spherical clusters) (Xu & Tian, 2015)

2. meamnaumuamumu (hierarchical clustering) Lﬂumﬁmﬂammmam
LL‘LI‘LIﬂ’Wﬂ‘LI‘IIu ‘[mau,ma ﬁ)ﬂﬂ]@ﬂJﬂL%‘ﬂJﬁUﬂﬂLﬂUﬂﬂﬂJﬂaﬂ (smgleton) LLa’]a’Wﬂﬂﬂ’]ﬁ‘ﬂﬂu’JE‘L‘li‘“ﬂ”
mammmmmlu ﬂﬂ’mﬂa ORI ’Nﬂa Y mmuna m"l,nanuw’]mmuw as ‘Uu
(agglomerative) via‘au,ﬂnﬂa W I dnasnas Gu 1 (divisive) aulmﬂa ULA EI'JEWWI’]H
"mmaawammmmmanLLam‘lua‘ﬂ dendrogram (Murtagh & Contreras, 2012; Xu & T|an
2015) ﬂﬂ?’%ﬂﬂa FOIES Lﬂ‘V]‘LlLV]ﬂﬁ ﬁWM‘IUﬂ’]‘Iﬁ’]‘I’J'@Iﬂ‘Nﬁ%"N‘UaQ‘Ualla‘VI Lﬂummwu
(hierarchical relationships) (Xu & Tian, 2015; Xu & Wunsch, 2005)

3. nfls‘amnaumum']wummu (denS|ty based clusterlng) Lﬂuma‘ﬁmnamama
‘Emﬂmﬂﬂmmwmuuu (den3|ty) mawmamasl,uwuw mmamawaﬂuwuwmmmumuum
(hlgh—denSIty regions) %gnw’mmuﬂqmmmnu Tmalmmmmwumgﬂmwmﬂqummm
(Xu & Tian, 2015) Tatdana3 NuATAUNIANEN (core points) ﬁﬁamauﬁwﬁmwa
LLa’mmﬂaanLﬂunauimﬂamiuum Vl’]iﬂﬂu%’mﬁﬂi’lll‘iﬂi"maﬁ‘i” LLas ’Qﬂﬂ’]i‘ﬂ]ﬂﬂﬁ‘iﬂﬂ?u
(noise) 1@@ (Kriegel et al, 201 1) muu mwmnamﬂrmwumm mmwam‘ﬂmﬂmq
degy (arbitrary shapes) memagaiumu (noise) (Xu & Tian, 2015; Xu & Wunsch,
2005)
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mnmwﬁmwmﬂuiﬂlﬂiﬁ (impossibility theorem) 4184 Kleinberg (2002) ) lud
Fanasiuladiay ARUAURIL aul‘uwumu‘w 3811 lAwn scale-invariance, richness Was
Con5|stency Tansauiu muu"l,umﬂaan"lﬂmuaaﬂaa‘mmmﬂau {1495 amaanananeng
waziaanIsnmunzauiudayauazingustasa (Jain, 2010)

ma?ﬁ)ﬁmamjam’msluﬁwuuumswrﬁumaaﬂaiﬂnumd 2 Lwaslmmms‘mmﬂau
ﬁﬁamfnulmuﬂi:awﬁmwmﬂmu il

1. W& aunudusun (contextual representation) 91nTuLAaN147 AN duls
a29n1n (pre-trained language models) LU BERT (Devlln et al., 2019) ?'qmmm’%’u
ﬂ’J’]ﬂJﬁMWHﬁL"]NV-W’J’]M%M’]ﬂﬁluﬂ%‘“Tﬂﬂimﬂﬂ’J’]L’JﬂLma%‘LLUUMLﬂM FenalinnsTnszazvng
styinanansaTiauayIndRe s L dusiuenu

2. 1 danasNnun159AnNa ULAIA N (deep clustering) L% U deep embedded
clustering (DEC) Lﬂunﬁiﬁ’mﬂa;mﬁL?ﬂuéfrﬁffaLquLLazé’mﬂa;méauﬁ’u (joint representation
and clustering learning) Tmﬂ DEC vinn19USumn (optimize) wigdinasuaslasaane
ﬂﬁ‘”mwmﬂm’amumLmudmumaﬂmamaﬂu latent space Wiaufiu Ferneannisimly
mummnmumauwaui AIUNU (feature learning) AUN199 ﬂﬂﬂ 1aaNNNU (Xie et al.,
2016) uaﬂmnuﬂmaaﬂaiwmau g L1 variational deep embedding (VaDE) (Jiang et

al., 2016) structural deep clustering network (SDCN) (Bo et al., 2020)

3. ldaanasNunaNNEIU L‘lj'u hierarchical density-based spatial clustering of
applications with noise (HDBSCAN) "LNLﬂuaaﬂa%‘mm‘wmmam“uaqm%‘ﬁ)maummmm
PUIBLUUTINAUNIGT ﬂﬂa um’mmmu%u Vl"l(hﬂ aflﬂJ’]?ﬂmﬁ")"\?"\)Uﬂﬁ llVl ll ATURUILUY
Vﬁqﬂﬁﬁ’]ﬂﬁ?@"ﬁUﬁauvLﬂﬂﬂ')’] DBSCAN (Campello et al., 2013)

ms‘ﬂs‘”L:Juﬂs‘“awﬁmwmmmnaumam’m

FriTefldlsiiiutls awamwmaaaanawummmﬂaummsmmqaamﬂu 2
Uszinnvan lawn }

1. 2% 5an1elu (internal metrics) U3 5a7 ld s ndudadldtnadifuas
Tunsusziiiuna Tngazissiliunuainainanuuzaasdaganialungu i szazvng
53WININGY (separation) ua mwwmLLuuﬂJawauamﬂuLLma Nqu (density) HaT5m
Uszinmilne mwa‘ummmlmwuauamqaamamﬂmnmiﬂwLﬂ’i‘?aumau (Mehta et al.,
2024) mamqmmm LU silhouette coefficient ”ﬂﬂ‘ljﬂ‘i WUANULRUNZ FNUAIN9IA

b—a
max(a,b)
e a Aasraziadanialungy uaz b Ansrazadslufnguilindfige (Shahapure &
Nicholas, 2020) TatiAn s azilAag Tuaiaq [1, -1] ¥nA1 s dadlng +1 aznunans
mativaglnaqaguiinan (centroid) maumejurﬁfuaqmmﬂfhnzjuﬁu 9 LAAIINNITIANGY
Qnsiasuazdaiau wananil 957 Ya3 U 9 1 u Davies-Bouldin index (DBI) waz
Calinski-Harabasz index (CHI)

wsiazsinagyiaglungu Tnaanduszazvinasznineyadaya Tamnlaanngeas

Journal of Research Methodology, 2025, 38(1), 69-90. 75



Tesclg yayloy

2. 23 ¥an auan (external metrics) 1usi a1 dusaeitaifuass
(ground truth labels) mamma amaua Tmﬂiﬂjﬂwﬂ’mmwmﬂsaumﬂumaawmaq
mfiamnaunummaumnmm fmmsmmJ';WLﬂmua‘“‘lﬁ’ﬂuﬂamwmﬂwmmwmmaﬂLLm
mamammm adJusted rand index (ARI) kag ﬂ’J’]ﬂJmfﬁWﬁ (purity) (I\/Iehta et al., 2024)
108 ARI LTUGTIAAINUFDAAS BT EMINIEaINAS AT (partitions) wﬂsumm’mmmmq
ﬁmﬂmfiqu (corrected for chance) (Hubert & Arabie, 1985) LLﬁM’J”IJJ‘UiEleﬁW Ugu
(simple purity) L'ﬂumiﬂsvLﬁué’ma'awuaqr?ffsaﬂ"m"l,uuﬁia”ﬂéuﬁﬁi’]wﬁwﬁ’umaﬁmmamu
Ineuaangutiu "“LLllaLV]EIUﬂU’%’]U’JUG]’JaEI’NdeJﬂ (Forestier et al., 2010)

uanmnu Hassan et al. (2024) ﬂqu,u INGUAIT TN A4 UszidulssEndnan
maamﬂamwmmu Tmmmqaamﬂumﬂmmﬂ"’lumLaua"mu (newly proposed internal)
‘mw RUVRRT u‘wmﬁ 2014 11U clustering validation based on nearest neighbor (CVNN)
e kernel coverage estimator (KCE)

ﬂ']?ﬂ?:ilﬂﬁi‘ﬁﬂ']‘i‘:)’ﬂﬂalusﬁﬂ ﬂ'J'IJJSlU‘LI?UVWI'Nﬂ']QEﬂHq

mauasuaﬂfmumqﬂ’]iﬁﬂw%ﬂumauaw a’]mfimﬂmmlmmnwmmmaq L
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mamqana‘amnaumamm‘lﬁmﬂ‘w k-means

‘ummmumLauamamqmmmﬂam‘lﬁmﬂ"w k-means Luaqmmﬂuaanmmwumu
A ANe U (flexibility) vl aﬂﬁ)"lﬂa"lu’]‘j‘ﬂﬂ?uﬂﬂmiﬂjlﬂ fudayanalaguuuy
Lﬂué’aﬂa?ﬁmﬁﬁﬂa‘:ﬁw%mw (efficiency) tasaniianuFaudne (simplicity) uaziian
ﬁUﬁauW’]ﬂﬂ’]u’Jmm (low computational compIeX|ty Tma‘lmmammma‘ HENNTENIN
ndoyaiurunsans uaz UsusuiaTunsass q 39ldnadszanasdadiaui
mAllAB Y uananhfdnasianisir e (ease of implementation) tiasa1niilausia
fianunsntn 14 uld (kotun et al, 2023)
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nqu g uyAAUbNas Ui (centroids) k 9 uAIvuaFUTTINeNITTANGY
LaznnedUiaRF uRLaITUNT a8 sty AUNTTUNIa8s 9z AR 1l within-cluster
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usia amﬂuL"ﬁumaﬂmaqnaumauauuaﬂ Slasn Kk sy A1 WCSS azanad LLG]GLWII'N
wuwmmﬁamm AN WCSS az13 use aamaummﬂumaﬂaﬂ (elbow) uuﬂmw Famn k
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FagunAay q s nau Ly silhouette coefficient ANTINAITUNADNTIUIUNGH
mnmmmmﬂLLa.,,ma*mwanqmmma

6i';l,;w;l:,Jum‘(;‘1/‘1"1\1'11,L‘|Ja~1 k-means
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a o o v a
#ﬁ@ﬁduﬂZUWUWﬂaU?W?

'pip install pythainlp scikit-learn matplotlib
import re

import random

import pandas as pd

from itertools import chain

from collections import Counter

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

from sklearn.metrics import silhouette score
from sklearn.decomposition import TruncatedSVD
import matplotlib.pyplot as plt

#ivuaRaEdmTuNIIANgudanun T ne
class ThaiTextClustering:
def init (

self,

ngram range=(1,1),

max df=0.25,

min df=10,

sublinear tf=True,

stopwords extra=None,

random state=42 ):

# G9ATWI9TLARS TF-IDF, stopwords Wazfiaulsiusu

self.vec params = dict(
tokenizer=str.split,
token pattern=None,
ngram_range=ngram_range,
max df=max df,
min df=min_ df,
sublinear tf=sublinear tf)
self.random state = random state
self.stop = set(thai stopwords())
if stopwords extra:
self.stop.update (stopwords extra)
self.vectorizer = None
self.model = None
self.X = None
self.labels = None

# MuuaAranduinANLazaNAtaALLATARAN
def clean and tokenize (self, text: str) -> List[str]:

txt = normalize (text)
txt = re.sub (r"http\S+|@\w+|#\w+|\d+| [*\uOEOO-\uOE7F\s]", " ", txt)
toks = word tokenize (txt, engine="newmm")

return [t for t in toks if len(t) > 1 and t not in self.stop]
# MUARINAUES1 TF-IDF matrix

def fit transform(self, docs: List[str]):
tokenized = [self.clean and tokenize(d) for d in docs]
docs _str = [" ".join(t) for t in tokenized]
self.vectorizer = TfidfVectorizer (**self.vec params)
self.X = self.vectorizer.fit transform(docs str)
return self.X, tokenized
# nmuaendfulszliumaiaea k ANz ey
def find best k(self, ks=range(2, 11)):
inertias, sils = [], []
for k in ks:
km = KMeans (n_clusters=k, random state=self.random state).fit (self.X)
inertias.append (km.inertia )
sils.append (silhouette score(self.X, km.labels ))
return list(ks), inertias, sils

# nuuaranduasaluina k-means

def fit kmeans(self, k: int):
self.model = KMeans (n clusters=k, random state=self.random state).fit (self.X)
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56 self.labels = self.model.labels
57 return self.labels
# fvusilsnduaginunuenasuasilafifusluusiazngu
58 def summarize clusters(self, docs: List[str]) -> pd.DataFrame:
59 df = pd.DataFrame({'text': docs, 'cluster': self.labels})
60 counts = df['cluster'].value counts().sort index ()
61 percents = df['cluster'].value counts(normalize=True).sort index() * 100
62 return pd.DataFrame ({'count': counts, 'percent': percents.round(2)})
# ivusilsnduniddnusiazngy
63 def top terms per cluster(self, top n=20) -> Dict[int, List[str]]:
64 terms = self.vectorizer.get feature names out ()
65 centers = self.model.cluster centers
66 result = {}
67 for i1, center in enumerate (centers):
68 idx = center.argsort () [::-1][:top n]
69 result[i] = [terms[j] for j in idx]
70 return result
# nmuarendukanisiatanasInusazNgy
71 def sample docs(self, docs: List[str], n samples: int = 5):
72 df = pd.DataFrame({'text': docs, 'cluster': self.labels})
73 for ¢ in sorted(df['cluster'].unique()):
74 print (f"Cluster {c}")
75 docs ¢ = df[df['cluster'] == c]['text'].tolist()
76 for doc in random.sample (docs c, min(n_samples, len(docs c))):
77 print (doc)
print ()
# MuUARINdUIIANG W elbow Way silhouette
78 def plot elbow silhouette(self, ks, inertias, sils):
79 plt.figure(figsize=(10, 4))
80 plt.subplot(l, 2, 1)
81 plt.plot (ks, inertias, marker='o"')
82 plt.title ("Elbow Method")
83 plt.xlabel ("k"); plt.ylabel ("Inertia")
84 plt.subplot(l, 2, 2)
85 plt.plot (ks, sils, marker='o')
86 plt.title("Silhouette Score")
87 plt.xlabel ("k"); plt.ylabel ("Score")
88 plt.tight layout ()
89 plt.show ()
# fuATNTUAS1LAZILAAY word cloud UBIANEANUAAZNEY
90 def plot wordclouds (self, tokenized docs: List[List[str]], font path: str, top n=12):
91 df idx = pd.DataFrame ({'tokens': tokenized docs, 'cluster': self.labels})
92 for ¢ in sorted(df idx['cluster'].unique()):
93 tokens = list(chain.from iterable(df idx[df idx['cluster'] = c]['tokens']))
94 freq = dict (Counter (tokens) .most common (top n))
95 wc = WordCloud (font path=font path, width=800, height=400,
background color='white') .generate from frequencies(freq)
96 plt.figure (figsize=(10, 5))
97 plt.imshow(wc, interpolation='bilinear')
98 plt.axis('off'")
99 plt.title(f'Cluster {c} Top {top n} Words')
100 plt.show ()

# nngun W lafau

# 1. fllvanuazaulna

101 uploaded = files.upload()
102 df = pd.read csv('data.csv')
103 docs = df['news'].fillna('"').astype(str).tolist()

# 2. 6514 pipeline dwiuiangudaniny
104 pipeline = ThaiTextClustering(stopwords extra={"lng", "um", "wa", "2"})

# 3. wlastamnudu TF-IDF
105 X, tokenized = pipeline.fit transform(docs)
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-
# 4. ¥ k NnUNCEU

106 ks, inertias, sils = pipeline.find best k(range(2,11))

107 pipeline.plot_elbow_silhouette(ks, inertias, sils)

# 5. dnluma k-means Gg k MLdan
108 pipeline.fit kmeans (5)
# 6. agUiruuanasuazilafifusluusiazngu
109 print(pipeline.summarize clusters (docs))
# 7. WAANANEIATIURSUANGY

110 for c, terms in pipeline.top terms per cluster (10).items () :
111 print (f"Cluster {c}:", ", ".join(terms)

# 8. uansaeaianansgulunsiazngy
112 pipeline.sample docs(docs, n_ samples=5)
# 9. Visualization

113 uploaded = files.upload()
114 pipeline.plot 2d scatter()
115 pipeline.plot wordclouds (tokenized, font path='/content/ChulaCharasNewReg.ttf')

ANagsUNalAR
Lines 1-11 Ansauazindnlausianlddmiunsiinszidanauniuing
Lines 12-20 MvuAAaNadmMsUNIsIANGudanun14 Ine
Line 15 ngram_range=(1,1) M®UATINUAY n-gram m%%ﬂu TF—IDF
Line 16 max_df=0.25 mmmwﬂmng"lul,aﬂmﬁmmﬂu 25% UBITAVLA LitaNTaAN
Tl i}
Line 17 min_df=10 diailsingluananstiosndn 10 B ivansasdfivenniduly
Line 18 sublinear_tf=True \Ualte1un1sUsu TF wuu log-scaling (1 + log(tf)) W@
TF wuumy
Line 19 stopwords_extra=None TUUYA stopwords RULA Y FIMFUNTELE AN FWIT
lawnZAifvuATL
Line 20 random _state=42 NvuUA seed mmumaau’m
Lines 21-35 ms‘mmms"\mmaﬁ‘ TF-IDF, stopwords waz@ulsidudy
Lines 21-27 $aANNsa31919nAn3 TF-IDF Tmamwumwwmmmmmm
Lines 29-31 @@ stopwords 11 PyThaiNLP WERLLNLALANE Lwan‘ia\‘iﬂ’mm
ARINN9RAN
Lines 32-35 Ugzn# attribute L?Iuﬁu (vectorizer, model, X k@< labels) Wity none
anslassainenanaliidaiau uasvanideanisGanldiulsniaundayldnu
Lines 36-40 WanduvinAnudzanatianuLazfnAn
Line 37 U3u normalization (UFuaszuaz@adinuslu PyThaiNLP Ivaglugiunnsgu)
Line 38 au URL, mentions, hashtags, st wazdnuseilailinun Inadae regex
Line 39 AnmA1A78 word_tokenize laaIN1nUA engine="newmm"
Line 40 n3aq token 71ANENT 1 (FAdNusiaen) vsanseifu stopwords
Lines 41-46 NMyuaANIndUa519 TF-IDF matrix
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Lines 41-43 wuauanangifulnimau (tokenize) warsulniauumazsianigiu
assaien (join) walhBuwals TF-IDiatlawlk TF-IDF
Lines 44-45 @319 TF-IDF matrix sgl TfidfVectorizer uaziiunaawalilu self.X
Lines 47-53 fvuailesdulszifiumeiadn k fivanzay
Line 48 La3aUadaInedmsuiuNa
Lines 49-52 auguainaluina Auasy inertia ka silhouette_score
Lines 54-57 nviuanenduasisluina k-means
Lines 58-62 nnuawsnduaguiuiwanasuasidasifuiluusazngu
Line 59 #5149 DataFrame 43717 df JuAradN 'text' (1anang) AU ‘cluster’ (labels)
Line 60 AUIEUINUIULANGTHANGY
Line 61 Aussuladitusvasanaissiangy
Lines 63-70 nMuuandunspidAgyuasusiazngy
Lines 64-65 paiaM1ansan vectorizer WATANTUNTAERAN model
Lines 66-69 %1 index Ua4 top-n terms duTULARZNGL udFaulaanduidhus
Lines 71-77 nMuuailndusanssitatnanaisainusasngy
Lines 71-73 w3ty DataFrame uazauguusiazngy
Lines 74-77 WuWdauargusiadiuanaisusasngy
Lines 78-89 mMuuanandunans n elbow uas silhouette
Lines 79-83 711mN3W elbow method
Lines 84-87 11aAN3 W silhouette score
Lines 88-89 9/ layout LATLAAINE
Lines 90-100 fiviuailenduadrauazuans word cloud uasAdAtyusiazngy
Lines 91-93 11 DataFrame 994 tokens 11U cluster
Lines 94-95 ﬂ"ﬂmmmmﬁ'uaza%q word cloud
Lines 96-100 2auwaztFuusis word cloud Nazngu
Lines 101-103 alluanuazaulna
Line 101 e files.upload() Widandunanlndanimsas
Line 102 f»jmlwgﬂ‘%'a data.csv sl pd.read_csv() Wuaailu DataFrame ?Ila df
Line 103 A4ARANL 'News' 21N df WNUA1INAE " ududaaiiu Python list ‘ldjla docs
Lines 104 @514 pipeline Tnaiadnedauians ThaiTextClustering Wiaumaua
stopwords dudin Taur (e’ une e, 3
Line 105 uilasdanauilu TF-IDF
Lines 106-107 %1 k fitiunzay
Line 106 15&1n find_best_k(range(2,11)) Lﬁlaﬂ?nﬁuﬂ"} inertia ka¥ silhouette score
UDILAAT K
Line 107 21an9 W elbow method a2 silhouette score
Line 108 finluina k-means @ae k ftdan
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Line 109 agiaruiuanasuazilasifusluusiazngu
Lines 110-111 WAAIANEIATYURIUGNGY
Line 112 uansinatraanaisgulunsasngu
Lines 113-115 Visualization
Line 113 Ban files.upload() adTanwausiayld
Line 114 7574 scatter plot 2D Tastayafianiinu
Line 115 a519uazLaAAS word cloud Tadusazngsl Inarinuaiiaguasmausian
'/content/ChulaCharasNewReg.ttf'

FINRE19NITTILTUNANISIUATIZI
msms‘ﬂumaua (preprocessmg)
‘uauavﬂmLﬂmmsl,umduLﬂumsumnaﬂaammmlmmmu 1,728 Faq aniiuls
ﬁuﬂmamumaﬂaauﬂi LV]ﬁlV]EI IﬂﬂLﬂU‘UﬂllaﬁNLLm'JlWl 1 uuﬂﬂu 2567 ﬁN 31 llu'\ﬂll
2568 mummmamam il
1) YINAIUEZANATAAL AEN1T normalize Wazal URL, mentions, hashtags,
Faarsasadnusi ildnunlne
) BmRN (tokenization) Taald PyThaiNLP (newmm) W& N84 stopwords Was
AU (1 AIENET)
3) ANAAMUANHUE A28 TF-IDF (max_df=0.25, min_df=10, ngram_range=(1,1),
sublinear_tf=True) Tanadwafiuwmsnt TF-IDF uuna 1,728x496

mﬂaanmmunau

Slafansung w elbow waz silhouette score sufiu uaz ATNONNN9RANUTID
lunsiazngu wudn k=5 Lﬂumuaunammm azmam fiaea1nAn inertia a0 elbow
method amaqamwmwul,ual,ﬂaﬂumn k =4 10U k = 5 waz silhouette score JJmEN“uu
Tutheienann aendiarivus k = 5 silhouette score 9z dA1wnfu 0. 0436 uanmnumi
LLmaaﬂLﬂu 5 nammmma‘mmmmLuam"LuLLma ﬂamlmamqmm au §ati 9P
mmauaan"lﬁu k = 5 1usuIUNGUNAN LN aiwlmmm’]mﬁmwumammLLa A2
aummaumammuam

MN93ATIEATIE A silhouette score 6N (0.0436) mmﬂmmmﬂaumlmmwu
LarsraznTTnINnguilatan wﬂwm?aa;ﬂﬁmmaanwmummaqLmaunquaw
paAIARaY ilasaninnaad TF-IDF Wudayafifiifigs (high-dimensional) waziidnunis
ﬂ’J’]JJ‘i/Tu’]l;I:‘liuﬁi:’W (sparse) N137RT=8LN9A2E Euclidean 397m LANeaA1uIndLAE L9
LAYt Lu;ihiauﬁaumﬁﬂnéjlﬁmmqmﬁwmw?au?umaqLaﬂm'ﬂ?q

uanmnummmﬂau‘lﬁmﬂ"lﬂj k-means U123 14U 1) FaINIMUATILIUNG N K
A29%1N "mmﬁwanmm’mLﬂmmmmammuu heuristic NTANNTNAABIILAINY Wﬁ’mm
LLa'JLaaﬂﬂ’Wleﬂ:ﬁﬂJVlEjﬂ 2) HAENETUNUNSI3 LAY (initialization) uaza19R AT local
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Tusaly yeyley
minimum 3) auyAgUnsInguilunsenau (spherical clusters) lumunziulassasedoya
ﬁLﬂuna'mﬂéNSa? swzafutou uaz 4) lasiadayasuniu (noise) Laztayannlng
(outllers Tmﬂﬁ) mmumaﬂmsl,mﬂaaumqmnnawan (Jain, 2010) Fatiu sLuﬂ’]’i’JLﬂ’i’]”ﬁ
%mamqﬂfmmevwanwmvmmmumawama LLauaWLﬂ?ﬂumaumaawammawnaumﬂ
Fanastuau 9 'mmm‘hjmmmﬂ‘ivawamwmﬂmnammﬂmﬂnmau 6 $2UA

AN 1
NINLFEUTIEI inertia (elbow method) uas silhouette score (k BIUE 2 0v 70)
Elbow Method Silhouette Score
1600
1575 4 0.055
1550 4 0.050 -
1525
o © 0.045 -
£ o
2 1500 4 &
0.040
1475
0.035
1450
0.030
1425
i 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
k k
NN 2

N199ANaUTAIIUAIE k-means (k = 5) YUWUTIGANIAA % Truncated SVD
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